首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 黎曼几何
Questions in category: 黎曼几何 (Riemannian Geometry).

Milnor conjecture

Posted by haifeng on 2017-08-12 19:29:58 last update 2017-08-12 19:37:29 | Answers (0)


Milnor 在 1968 年猜测任意一个开的 $n$ 维流形, 若 $\mathrm{Ric}_M\geqslant 0$, 则其基本群是有限生成的.

 

Thm. (Peter Li, Anderson 1980) 对于黎曼流形 $(M^n,g)$, 若 $\mathrm{Ric}\geqslant 0$ 且 $\mathrm{Vol}(B_r(p))\sim r^n$, 即半径为 $r$ 的球体积关于半径的增长速度是最快的(with max volume growth), 则 $\pi_1(M^n)$ 是有限生成的.

 

Remark: 体积增长得最快的如 hyperbola; 体积增长的最慢的如圆柱(cylinder): $\mathrm{Vol}(B_r(p))\sim r$.